ReentrantReadWriterLock
读写锁类图(截图来源https://blog.csdn.net/wangbo199308/article/details/108688148)
state的设计
读写锁将变量state切分成两个部分,高16位表示读,低16位表示写
源码中将4字节(32位)的int数据类型state,通过SHARED_SHIFT(16)划分读和写;
每次读锁增加的单元,SHARED_UNIT = (1 << SHARED_SHIFT) 也即0x00010000,即每次读锁增加从17位开始加1
读写锁最大数量:MAX_COUNT = (1 << SHARED_SHIFT) – 1,16位最大值
写锁的掩码:EXCLUSIVE_MASK = (1 << SHARED_SHIFT) – 1, 即求写锁数量,将state和此掩码做与运算,将高16位抹去
计算读锁数量逻辑:c >>> SHARED_SHIFT,取高16位
计算写锁数量逻辑:c & EXCLUSIVE_MASK,将state和此掩码做与运算,将高16位抹去
public class ReentrantReadWriteLock implements ReadWriteLock, java.io.Serializable { abstract static class Sync extends AbstractQueuedSynchronizer { //16位划分读和写 static final int SHARED_SHIFT = 16; static final int SHARED_UNIT = (1 << SHARED_SHIFT); static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; static int sharedCount(int c) { return c >>> SHARED_SHIFT; } static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; } } }
读锁
读锁上锁的调用链:ReentrantReadWriteLock$ReadLock#lock() –>AbstractQueuedSynchronizer#acquireShared() –>ReentrantReadWriteLock$Sync#tryAcquireShared()
当前写锁数量为0或独占锁持有者就是当前线程才进行读锁逻辑
读锁数量通过CAS加1
之后逻辑是将读锁线程放入ThreadLocal中,记录各自锁数量
public class ReentrantReadWriteLock implements ReadWriteLock, java.io.Serializable { public static class ReadLock implements Lock, java.io.Serializable { public void lock() { sync.acquireShared(1); } } }
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable { public final void acquireShared(int arg) { if (tryAcquireShared(arg) < 0) doAcquireShared(arg); } }
public class ReentrantReadWriteLock implements ReadWriteLock, java.io.Serializable { abstract static class Sync extends AbstractQueuedSynchronizer { protected final int tryAcquireShared(int unused) { Thread current = Thread.currentThread(); int c = getState(); // 同时满足写锁数量不为0,且独占锁不是当前线程,走doAcquireShared逻辑 if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; // 取高16位读锁数量 int r = sharedCount(c); if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) { // ThreadLocal存放锁信息 if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } return fullTryAcquireShared(current); } } }
在读锁获取锁过程,写锁不为0且占有写锁的不是当前线程,返回-1,走同步器doAcquireShared方法,等待写锁释放;
前置节点是head节点时,尝试获取共享锁
private void doAcquireShared(int arg) { // 队列加入的node是共享模式 final Node node = addWaiter(Node.SHARED); boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head) { //前置节点是head节点时,尝试获取共享锁 int r = tryAcquireShared(arg); if (r >= 0) { setHeadAndPropagate(node, r); p.next = null; // help GC if (interrupted) selfInterrupt(); failed = false; return; } } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
写锁
- 读锁不为0,但写锁为0,获取锁失败;读锁不为0,写锁也不为0,但独占锁不是当前线程,获取锁失败
- 如果锁数量已到最大,获取失败
- 否则获取写锁,更新state
public class ReentrantReadWriteLock implements ReadWriteLock, java.io.Serializable { abstract static class Sync extends AbstractQueuedSynchronizer { protected final boolean tryAcquire(int acquires) { Thread current = Thread.currentThread(); int c = getState(); int w = exclusiveCount(c); if (c != 0) { // (Note: if c != 0 and w == 0 then shared count != 0) if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w + exclusiveCount(acquires) > MAX_COUNT) throw new Error("Maximum lock count exceeded"); // Reentrant acquire setState(c + acquires); return true; } if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) return false; setExclusiveOwnerThread(current); return true; } } }
共享锁和独占锁
读锁是共享锁,当线程1获得读锁时,并不会排斥线程2去获取读锁,而是在ThreadLocal中保存每个锁数量
abstract static class Sync extends AbstractQueuedSynchronizer { static final class HoldCounter { int count = 0; // Use id, not reference, to avoid garbage retention final long tid = getThreadId(Thread.currentThread()); } static final class ThreadLocalHoldCounter extends ThreadLocal<HoldCounter> { public HoldCounter initialValue() { return new HoldCounter(); } } }
写锁是独占锁,会调用同步器AbstractQueuedSynchronizer#acquire()方法,默认加入队列的node模式是独占模式
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
锁降级
锁降级就是从写锁降级成为读锁。在当前线程拥有写锁的情况下,再次获取到读锁,随后释放写锁的过程就是锁降级
锁降级示例:
public void processData() { ReentrantReadWriteLock lock = new ReentrantReadWriteLock(); ReentrantReadWriteLock.ReadLock readLock = lock.readLock(); ReentrantReadWriteLock.WriteLock writeLock = lock.writeLock(); readLock.lock(); if(!update) { //必须先释放读锁 readLock.unlock(); // 锁降级从写锁获取到开始 writeLock.lock(); try{ if(!update) { update = true; } // 可以获取到读锁,getExclusiveOwnerThread() == current readLock.lock(); } finally { writeLock.unlock(); } //锁降级完成,写锁降级为读锁 } try{ // 使用数据的流程 } finally { readLock.unlock(); } }
可降级的源码仍是在读锁tryAcquireShared方法中,getExclusiveOwnerThread() == current,也即当前独占锁owner就是当前线程,可进行读锁逻辑。
protected final int tryAcquireShared(int unused) { if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; }
参考:《Java并发编程的艺术》