双指针技巧直接秒杀五道算法题

微信扫一扫,分享到朋友圈

双指针技巧直接秒杀五道算法题

学算法认准  labuladong

后台回复 进群 一起刷力扣:smirk:

读完本文,可以去力扣解决如下题目:

141.环形链表( Easy

141.环形链表II( Medium

167.两数之和 II – 输入有序数组( Medium )

344.反转字符串( Easy

19.删除链表倒数第 N 个元素( Medium

本文是一两年前发过的一篇文章,当时没多少人看,现在由于账号迁移的原因公众号里都搜索不到了,我就重新加工了一下,并且添加了新内容,直接套双指针技巧秒杀 5 道算法题。

其实,鼎鼎有名的「滑动窗口算法」就是一种双指针技巧,我们之前的爆文 我写了套框架,把滑动窗口算法变成了默写题 就有这么一段:

我把双指针技巧再分为两类,一类是「快慢指针」,一类是「左右指针」。前者解决主要解决链表中的问题,比如典型的判定链表中是否包含环;后者主要解决数组(或者字符串)中的问题,比如二分查找。

一、快慢指针的常见算法

快慢指针一般都初始化指向链表的头结点 head ,前进时快指针 fast 在前,慢指针 slow 在后,巧妙解决一些链表中的问题。

1、判定链表中是否含有环

这属于链表最基本的操作了,学习数据结构应该对这个算法思想都不陌生。

单链表的特点是每个节点只知道下一个节点,所以一个指针的话无法判断链表中是否含有环的。

如果链表中不含环,那么这个指针最终会遇到空指针 null 表示链表到头了,这还好说,可以判断该链表不含环:

boolean hasCycle(ListNode head) {
while (head != null)
head = head.next;
return false;
}

但是如果链表中含有环,那么这个指针就会陷入死循环,因为环形数组中没有 null 指针作为尾部节点。

经典解法就是用两个指针,一个跑得快,一个跑得慢。如果不含有环,跑得快的那个指针最终会遇到 null ,说明链表不含环;如果含有环,快指针最终会超慢指针一圈,和慢指针相遇,说明链表含有环。

力扣第 141 题就是这个问题,解法代码如下:

boolean hasCycle(ListNode head) {
ListNode fast, slow;
fast = slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) return true;
}
return false;
}

2、已知链表中含有环,返回这个环的起始位置


这个问题一点都不困难,有点类似脑筋急转弯,先直接看代码:

ListNode detectCycle(ListNode head) {
ListNode fast, slow;
fast = slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) break;
}
// 上面的代码类似 hasCycle 函数
slow = head;
while (slow != fast) {
fast = fast.next;
slow = slow.next;
}
return slow;
}

可以看到,当快慢指针相遇时,让其中任一个指针指向头节点,然后让它俩以相同速度前进,再次相遇时所在的节点位置就是环开始的位置。这是为什么呢?

第一次相遇时,假设慢指针 slow 走了 k 步,那么快指针 fast 一定走了 2k 步:


fast一定比slow多走了k步,这多走的k步其实就是fast指针在环里转圈圈,所以k的值就是环长度的「整数倍」。

说句题外话,之前还有读者争论为什么是环长度整数倍,我举个简单的例子你就明白了,我们想一想极端情况,假设环长度就是 1,如下图:


那么 fast 肯定早早就进环里转圈圈了,而且肯定会转好多圈,这不就是环长度的整数倍嘛。

言归正传,设相遇点距环的起点的距离为 m ,那么环的起点距头结点 head 的距离为 k - m ,也就是说如果从 head 前进 k - m 步就能到达环起点。

巧的是,如果从相遇点继续前进 k - m 步,也恰好到达环起点。你甭管 fast 在环里到底转了几圈,反正走 k 步可以到相遇点,那走 k - m 步一定就是走到环起点了:


所以,只要我们把快慢指针中的任一个重新指向 head ,然后两个指针同速前进, k - m 步后就会相遇,相遇之处就是环的起点了。

3、寻找链表的中点

类似上面的思路,我们还可以让快指针一次前进两步,慢指针一次前进一步,当快指针到达链表尽头时,慢指针就处于链表的中间位置。

力扣第 876 题就是找链表中点的题目,解法代码如下:

ListNode middleNode(ListNode head) {
ListNode fast, slow;
fast = slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
}
// slow 就在中间位置
return slow;
}

当链表的长度是奇数时, slow 恰巧停在中点位置;如果长度是偶数, slow 最终的位置是中间偏右:


寻找链表中点的一个重要作用是对链表进行归并排序。

回想数组的归并排序:求中点索引递归地把数组二分,最后合并两个有序数组。对于链表,合并两个有序链表是很简单的,难点就在于二分。

但是现在你学会了找到链表的中点,就能实现链表的二分了。关于归并排序的具体内容本文就不具体展开了。

4、寻找链表的倒数第 n 个元素

这是力扣第 19 题「删除链表的倒数第 n 个元素」,先看下题目:


我们的思路还是使用快慢指针,让快指针先走 n 步,然后快慢指针开始同速前进。这样当快指针走到链表末尾 null 时,慢指针所在的位置就是倒数第 n 个链表节点( n 不会超过链表长度)。

解法比较简单,直接看代码吧:

ListNode removeNthFromEnd(ListNode head, int n) {
ListNode fast, slow;
fast = slow = head;
// 快指针先前进 n 步
while (n-- > 0) {
fast = fast.next;
}
if (fast == null) {
// 如果此时快指针走到头了,
// 说明倒数第 n 个节点就是第一个节点
return head.next;
}
// 让慢指针和快指针同步向前
while (fast != null && fast.next != null) {
fast = fast.next;
slow = slow.next;
}
// slow.next 就是倒数第 n 个节点,删除它
slow.next = slow.next.next;
return head;
}

二、左右指针的常用算法

左右指针在数组中实际是指两个索引值,一般初始化为 left = 0, right = nums.length - 1

1、二分查找

前文二分查找框架详解 有详细讲解,这里只写最简单的二分算法,旨在突出它的双指针特性:

int binarySearch(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
while(left <= right) {
int mid = (right + left) / 2;
if(nums[mid] == target)
return mid;
else if (nums[mid] < target)
left = mid + 1;
else if (nums[mid] > target)
right = mid - 1;
}
return -1;
}

2、两数之和

直接看力扣第 167 题「两数之和 II」吧:


只要数组有序,就应该想到双指针技巧。这道题的解法有点类似二分查找,通过调节 leftright 可以调整 sum 的大小:

int[] twoSum(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == target) {
// 题目要求的索引是从 1 开始的
return new int[]{left + 1, right + 1};
} else if (sum < target) {
left++; // 让 sum 大一点
} else if (sum > target) {
right--; // 让 sum 小一点
}
}
return new int[]{-1, -1};
}

3、反转数组

一般编程语言都会提供 reverse 函数,其实非常简单,力扣第 344 题是类似的需求,让你反转一个 char[] 类型的字符数组,我们直接看代码吧:

void reverseString(char[] arr) {
int left = 0;
int right = arr.length - 1;
while (left < right) {
// 交换 arr[left] 和 arr[right]
char temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
left++; right--;
}
}

4、滑动窗口算法

这也许是双指针技巧的最高境界了,如果掌握了此算法,可以解决一大类子字符串匹配的问题,不过「滑动窗口」稍微比上述的这些算法复杂些。

不过这类算法是有框架模板的,而且前文 我写了首诗,把滑动窗口算法变成了默写题 就讲解了「滑动窗口」算法模板,帮大家秒杀几道子串匹配的问题,如果没有看过,建议去看看。

三连走起~

往期推荐  :link:

阶乘相关的算法题,东哥又整活儿了

手写正则通配符算法,结构清晰,包教包会!

关于算法笔试,东哥又整出套路了

详解最长公共子序列,秒杀三道动态规划

_____________

学好算法靠套路,认准 labuladong, 知乎、B站账号同名。

《labuladong的算法小抄》即将出版,公众号后台回复关键词 「pdf」 下载,回复 「进群」 可加入刷题群。

微信扫一扫,分享到朋友圈

双指针技巧直接秒杀五道算法题

对抗病毒,人类不光要解决“卡脖子”问题,还要解决“卡脑子”问题

上一篇

科研团队联合行动——夏季汛情为何如此凶猛?

下一篇

你也可能喜欢

双指针技巧直接秒杀五道算法题

长按储存图像,分享给朋友