Explain! Explain! Explain!

综合技术 2017-12-03

Predictive modeling is fun. With random forest, xgboost, lightgbm and other elastic models…

Problems start when someone is asking how predictions are calculated.

Well, some black boxes are hard to explain.

And this is why we need good explainers.

In the June Aleksandra Paluszynska defended her master thesis Structure mining and knowledge extraction from random forest . Find the corresponding package randomForestExplainer and its vignette here .

In the September David Foster published a very interesting package xgboostExplainer . Try it to extract useful information from a xgboost model and create waterfall plots that explain variable contributions in predictions. Read more about this package here .

In the October Albert Cheng published lightgbmExplainer . Package with waterfall plots implemented for lightGBM models. Its usage is very similar to the xgboostExplainer package.

Waterfall plots that explain single predictions are great. They are useful also for linear models. So if you are working with lm() or glm() try the brand new breakDown package (hmm, maybe it should be named glmExplainer). It creates graphical explanations for predictions and has such a nice cheatsheet:

Install the package from https://pbiecek.github.io/breakDown/ .

Thanks to RStudio for the cheatsheet’s template.


责编内容by:R-bloggers (源链)。感谢您的支持!


A Data Scientist’s Guide to Predicting Housing Pri... Sberbank Russian Housing Market A Kaggle Competition on Predicting Realty Price in Russia ...
为什么XGBoost在机器学习竞赛中表现如此卓越?... 原标题:为什么XGBoost在机器学习竞赛中表现如此卓越? 机器之心原创 作者:Yi Jin、Joni Chuang 参与:Panda 挪威科技大学 Didrik Nielsen 的硕...
机器学习提升算法之Adaboost、GB、GBDT与XGBoost算法... 一、提升算法概论 Boosting(提升)是一族可将弱学习器提升为强学习器的算法。提升算法基于这样一种思想:对于一个复杂的任务,将多个专家的判断总和得出的结果要比任何一个专家单独的判断好。这族算法...
xgboost算法和工程 理论 监督学习三要素 模型和参数 模型指给定输入Xi如何去预测 输出 Yi。 我们比较常见的模型如线性模型(包括线性回归和logistic regression)采用了线性叠加的方式进行...
Building Random Forest Classifier with Python Scik... Random Forest Algorithm in Python Building Random Forest Algorithm in Python In t...