网络科技

    今日:101| 主题:245871
收藏本版
互联网、科技极客的综合动态。

[科技] 5 Simple Math Problems No One Can Solve

[复制链接]
悲劇主縯 发表于 2016-10-17 01:17:36
116 2

立即注册CoLaBug.com会员,免费获得投稿人的专业资料,享用更多功能,玩转个人品牌!

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
Collatz Conjecture

                       Pick any number. If that number is even, divide it by 2. If it's odd, multiply it by 3 and add 1. Now repeat the process with your new number. If you keep going, you'll eventually end up at 1. Every time.
    Mathematicians have tried millions of numbers and they've never found a single one that didn't end up at 1 eventually. The thing is, they've never been able to prove that there isn't a special number out there that never leads to 1. It's possible that there's some really big number that goes to infinity instead, or maybe a number that gets stuck in a loop and never reaches 1. But no one has ever been able to prove that for certain .
    Jon McLoone
       Moving Sofa Problem

                       So you're moving into your new apartment, and you're trying to bring your sofa. The problem is, the hallway turns and you have to fit your sofa around a corner. If it's a small sofa, that might not be a problem, but a really big sofa is sure to get stuck. If you're a mathematician, you ask yourself: What's the largest sofa you could possibly fit around the corner? It doesn't have to be a rectangular sofa either, it can be any shape.
    This is the essence of the moving sofa problem . Here are the specifics: the whole problem is in two dimensions, the corner is a 90-degree angle, and the width of the corridor is 1. What is the largest two-dimensional area that can fit around the corner?
   The largest area that can fit around a corner is called—I kid you not—the sofa constant. Nobody knows for sure how big it is, but we have some pretty big sofas that do work, so we know it has to be at least as big as them. We also have some sofas that don't work, so it has to be smaller than those. All together, we know the sofa constant has to be between 2.2195 and 2.8284.
    Claudio Rocchini
    Advertisement - Continue Reading Below
      Perfect Cuboid Problem

                        Remember the pythagorean theorem, A 2 + B²= C²? The three letters correspond to the three sides of a right triangle. In a Pythagorean triangle, and all three sides are whole numbers. Let's extend this idea to three dimensions. In three dimensions, there are four numbers. In the image above, they are A, B, C, and G. The first three are the dimensions of a box, and G is the diagonal running from one of the top corners to the opposite bottom corner.
    The goal is to find a box where A²+ B²+ C²= G², and where all four numbers are integers. Mathematicians have tried many different possibilities and have yet to find a single one that works. But they also haven't been able to prove that such a box doesn't exist, so the hunt is on for a perfect cuboid.
    Gfis
       Inscribed Square Problem

                        Draw a closed loop. The loop doesn't have to be a circle, it can be any shape you want, but the beginning and the end have to meet and the loop can't cross itself. It should be possible to draw a square inside the loop so that all four corners of the square are touching the loop. According to the inscribed square hypothesis, every closed loop (specifically every plane simple closed curve) should have an inscribed square, a square where all four corners lie somewhere on the loop.
   This has already been solved for a number of other shapes, such as triangles and rectangles. But squares are tricky, and so far a formal proof has eluded mathematicians.
    Claudio Rocchini
    Advertisement - Continue Reading Below
      Happy Ending Problem

                        The happy ending problem is so named because it led to the marriage of two mathematicians who worked on it, George Szekeres and Esther Klein. Essentially, the problem works like this:
   Make five dots at random places on a piece of paper. Assuming the dots aren't deliberately arranged—say, in a line—you should always be able to connect four of them to create a convex quadrilateral, which is a shape with four sides where all of the corners are less than 180 degrees. The gist of this theorem is that you'll always be able to create a complex quadrilateral with five random dots, regardless of where those dots are positioned.
   So that's how it works for four sides. But for a pengaton, a five-sided shape, it turn out you need nine dots. For a hexagon, it's 17 dots. But beyond that, we don't know. It's a mystery how many dots is required to create a heptagon or any larger shapes. More importantly, there should be a formula to tell us how many dots are required for any shape. Mathematicians suspect the equation is M=1+2N-2, where M is the number of dots and N is the number of sides in the shape. But as yet, they've only been able to prove that the answer is at least as big as the answer you get that way.
    David Eppstein
友荐云推荐




上一篇:韩国政府与三星方面对Note 7 事故原因同时展开调查
下一篇:Why the Calendar app in macOS Sierra can show a short memory
酷辣虫提示酷辣虫禁止发表任何与中华人民共和国法律有抵触的内容!所有内容由用户发布,并不代表酷辣虫的观点,酷辣虫无法对用户发布内容真实性提供任何的保证,请自行验证并承担风险与后果。如您有版权、违规等问题,请通过"联系我们"或"违规举报"告知我们处理。

宇轩工作室 发表于 2016-10-17 03:26:32
我喜欢的女孩要像黛玉一样有才气,像宝钗一样懂事,像可卿一样漂亮,像湘云一样豪爽,像李纨一样忠贞,像探春一样能干,像凤姐一样精明,还要像元春一样有福气,呵呵……
回复 支持 反对

使用道具 举报

雷娜 发表于 2016-10-20 16:38:04
在这个处处都要积分的时代,我不得不弄个NB的数字来显眼,于是我抄下了这段话,专门用来回帖
回复 支持 反对

使用道具 举报

*滑动验证:
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

我要投稿

推荐阅读

扫码访问 @iTTTTT瑞翔 的微博
回页顶回复上一篇下一篇回列表手机版
手机版/CoLaBug.com ( 粤ICP备05003221号 | 文网文[2010]257号 )|网站地图 酷辣虫

© 2001-2016 Comsenz Inc. Design: Dean. DiscuzFans.

返回顶部 返回列表