网络科技

    今日:1277| 主题:245357
收藏本版
互联网、科技极客的综合动态。

[科技] Big data and the cloud: It's not even that scary

[复制链接]
相思劫 发表于 2016-9-30 22:22:21
120 1

立即注册CoLaBug.com会员,免费获得投稿人的专业资料,享用更多功能,玩转个人品牌!

您需要 登录 才可以下载或查看,没有帐号?立即注册

x

Big data and the cloud: It's not even that scary-1 (understand,businesses,thousands,marketing,computers)

   Sysadmin blogOnce all the marketing is cleared away, just what is big data, and how does it help real businesses of all sizes? Marketing would have us believe that big data is new, huge, terrifying, complicated, impossible without their help and yet will deliver unmatched benefits. Like many things in tech, however, big data is really just an iterative evolution of things most businesses already do.
  The first thing to understand about big data is that it isn't new. As a concept it is, in fact, quite old. Thousands and thousands of years old; it's just a heck of a lot easier with a computer.
  Big data is about gathering lots and lots of unstructured data and then making sense of it. That's it. That's all there is to it, and computers don't need to be involved.
   “If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle." – Sun Tzu, The Art of War .
  Thousands of years ago, successful generals gathered information about everything from terrain to weather, economics to the sociocultural mores of their opponents. Huge teams of experts sifted through oceans of data, reviewing notes left by past warriors, studying oral history and more. Victory came from preparation and intelligence, not merely strength of arms.
  History repeating itself

  Around 2,000 years ago we started using computers. The Antikythera mechanism is thought to have been used to predict astronomical phenomena for calendric purposes. We've used computers – first analogue, and then digital – ever since. So inculcated has reliance upon these mechanisms become that we collectively take them for granted.
  Can you imagine farming if there were no calendars, and all documentation on methodology was scattered unevenly throughout society? Essentially farmers would be trying to farm using nothing but oral history and whatever documentation, calculation and records each farmer created on their own.
  How about the daily grind of waking on time, commuting, spending the requisite number of hours at work and returning home if there were no clocks? The simple combination of "it is this time" and "get up now" resulting in an alarm changed our entire society.
  If these questions seem absurd and primitive, understand that 25 years from now businesses and business people will feel the exact same way about trying to operate a business without the analytics tools we hype as "big data" today.
  Practical examples

  When companies talk about big data they normally talk about how big data can be used to perform behavioural analytics for governments or fortune 500 companies. They talk about datasets in the hundreds of terabytes and finding tiny needles in universes of data. None of that matters to average businesses. But there are big data concepts that do.
  The real gold mine of big data analytics for any company is their middleware. Any company larger than about five people has middleware, even if all the middleware does is join up the accounting system to the Customer Relationship Management (CRM) system.
  Most companies produce something. Bread. Bicycles. Articles about big data. Somewhere along the line keeping track of what's been ordered, what's in the process of being manufactured and what's out the door matters. Joining that up to the accounting and CRM systems helps. If you ship or receive physical goods there's probably some logistics software too...even the smallest businesses drown in data.
  The middleware might just be some parsers knocked together in PowerShell or bash. Maybe it's just a batch script that runs every night to export from one application and import to another. Maybe one of the applications has middleware functionality built in and manages for all the rest...but somewhere, there's a widget taking data from one or more applications and feeding it into others.
  It is right there the opportunity for big data exists. If you copy off the data from these various applications as it transits the middleware and store it somewhere (a database is a likely suspect) then you can start asking that data interesting questions.
  The logistics software might want to interact with the accounting software so that it can include a copy of the invoice and the CRM software in order to get the customer's address. That's normal functionality and doesn't really involve analytics.
  But maybe sales want to cross reference order arrival time with time to ship out, customer geographic region and even products ordered. The goal: see if there is a correlation between the length of time it takes certain products to make it through manufacturing and customer retention in specific geographic regions.
  The data exists in those systems. It probably transits the middleware every day. But building a widget to gather the data from those systems (or the middleware), store it somewhere and then ask the data that question...that's big data.
  We know that the movement of the constellations across the night sky is correlated with the seasons, and that planting specific crops at specific times of year is a good plan, but building a widget that takes both sets of knowledge and presents us with "do this on this date"...that's big data.
  The cloud thing

  The modern concept of big data wasn't born in the cloud, but the two did grow up together. Of all the workloads one could name, Big Data seems almost uniquely suited to the public cloud's cloudbursting capabilities.
  The existence of the public cloud has birthed an unending number of data-collecting applications and services and these in turn drive demand for big data. Of course, the cliché is that collecting data doesn't help you if you don't know what to ask your data. This is why cloudbursting works so well for analytics applications.
  Most real world big data applications don't churn endlessly on the data. They're reports that run at specific times, or which are carefully constructed for very occasional use. Crunching large datasets can require insane levels of computing power, but when the analysis is done all those VMs doing all that work can be discarded.
  Creating good middleware has always been something of a dark art. Doing analytics on all the information that transits that middleware is a layer more complicated again. It takes time, experience, expertise and – above all – testing to get it right.
  Done right, however, big data analytics really are transformative for most businesses.
  The hot dog cart company sells 8x more bratwurst on 4th and Main than it does on 8th and 2nd, but sells 6x as much Mundare sausage on 8th and 2nd as anywhere else? Weather affects which hot dogs are bought, and different districts are affected differently? We can analyse that. Changing up the cart loads is cheap and simple enough and voila: more profits.
  Now, what if we feed all the data about who buys what from each cart to a cloud repository in real time. We add in a customer loyalty something or other to help get demographics, or tie in a camera and start doing facial recognition from one o the emerging cloud forensics-as-a-service (FRaaS) vendors.
  Now we can do everything from target advertising to more accurately predicting what loadouts we should have in our hot dog carts for special events, or if we are planning to set up on a new corner with a different demographic.
  We could even start looking at where people from our city take their vacations and set up carts there, where we'll be a familiar brand that has exactly what they want, when they want it. That's big data. And it's what turns one hot-dog truck into two, and two into an international chain of them.
  So what do you do with your data? ®
友荐云推荐




上一篇:Avast not done with deal-making after AVG buy, but no rush
下一篇:柳甄与优步中国的445天
酷辣虫提示酷辣虫禁止发表任何与中华人民共和国法律有抵触的内容!所有内容由用户发布,并不代表酷辣虫的观点,酷辣虫无法对用户发布内容真实性提供任何的保证,请自行验证并承担风险与后果。如您有版权、违规等问题,请通过"联系我们"或"违规举报"告知我们处理。

zkoi7915 发表于 2016-11-17 06:42:14
小白一个 顶一下
回复 支持 反对

使用道具 举报

*滑动验证:
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

我要投稿

推荐阅读

扫码访问 @iTTTTT瑞翔 的微博
回页顶回复上一篇下一篇回列表手机版
手机版/CoLaBug.com ( 粤ICP备05003221号 | 文网文[2010]257号 )|网站地图 酷辣虫

© 2001-2016 Comsenz Inc. Design: Dean. DiscuzFans.

返回顶部 返回列表